Ch.14 Complex Vector Spaces

Return to TOC

Polynomial Division

A polynomial has the form p(x)=cnxn+cn1xn1++c0p(x)=c_nx^n+c_{n-1}x^{n-1}+\cdots+c_0 with cn0c_n\ne0. It has degree nn. If n=0n=0, it is a constant polynomial p(x)=c0p(x)=c_0. If c00c_0\ne0 it has degree 00, if c0=0c_0=0 we define it as having degree -\infty.

Let p(x)p(x) be a polynomial. If d(x)d(x) is a nonzero polynomial, then there are quotient and remainder polynomials q(x)q(x) and r(x)r(x) such that
p(x)=d(x)q(x)+r(x)p(x)=d(x)\cdot q(x)+r(x)
where the degree of r(x)r(x) is strictly less than d(x)d(x). This is polynomial division.
If we choose d(x)=xλd(x)=x-\lambda, then r(x)r(x) is a degree zero polynomial, i.e. a constant, and we can see r(x)=p(λ)r(x)=p(\lambda).

If divisor d(x)d(x) goes into p(x)p(x) evenly, so that r(x)=0r(x)=0, then d(x)d(x) is a factor of p(x)p(x). Any root of the factor λR\lambda\in\mathbb{R} such that d(λ)=0d(\lambda)=0 is also a root of p(x)p(x) because p(λ)=d(λ)q(λ)=0p(\lambda)=d(\lambda)\cdot q(\lambda)=0
If λ\lambda is a root of p(x)p(x), then xλx-\lambda divides p(x)p(x) because
p(x)=(xλ)q(x)+p(λ)=(xλ)q(x)+0=(xλ)q(x)p(x)=(x-\lambda)q(x)+p(\lambda)=(x-\lambda)q(x)+0=(x-\lambda)q(x)
because λ\lambda is a root.

An irriducible polynomial over a field (e.g. Z,R\mathbb{Z},\mathbb{R}) is one that cannot be factored into lesser-degree polynomials over that field.
A degree 00 or 11 polynomial is always irriducible over the reals. A degree 22 polynomial is irriducible over the reals iff the discriminant is negative. No degree nn polynomial n>3n>3 is irriducible over the reals.

Example 14.1

x4+1x^4+1 can be factored into (x2+2x+1)(x22+1)(x^2+\sqrt{2}x+1)(x^2-\sqrt{2}+1).

This implies that every polynomial can be factored into linear and irriducible quadratic polynomials with real coefficients, uniquely. Complex numbers are required to factor irriducible quadratics.

Complex Numbers

To solve the problem that there is no real solution to x2+1=0x^2+1=0, we declare by fiat that i=1i=\sqrt{-1} exists.
This creates numbers of the form a+bia+bi, with a,bRa,b\in\mathbb{R}.
A complex number isa number of the form a+bia+bi for a,bRa,b\in\mathbb{R}. The set of complex numbers is denoted C\mathbb{C}.
Note RC\mathbb{R}\subset\mathbb{C}: theyre all in the form a+0ia+0i

We can identity C\mathbb{C} with R2\mathbb{R}^2 by a+bi(ab)a+bi\leftrightarrow\begin{pmatrix}a\\b\end{pmatrix} and draw C\mathbb{C} as a plane.

Operations on Complex Numbers

Addition

(a+bi)+(c+di)=(a+c)+(b+d)i(a+bi)+(c+di)=(a+c)+(b+d)i

Multiplication

(a+bi)(c+di)=ac+adi+bci+bd(1)=(acbd)(ad+bc)i(a+bi)(c+di)=ac+adi+bci+bd(-1)=(ac-bd)(ad+bc)i

Complex Conjugation

a+bi=abi\overline{a+bi}=a-bi
Note that this implies for z,wCz,w\in\mathbb{C}
z+w=z+w and zw=zw\overline{z+w}=\overline{z}+\overline{w}\text{ and }\overline{zw}=\overline{z}\cdot\overline{w}
Proof of above:
Let z=a+biz=a+bi and w=c+diw=c+di
z+w=(a+bi)+(c+di)=(a+c)+(b+d)i=(a+c)(b+d)i=abi+cdi=z+w\overline{z+w}=\overline{(a+bi)+(c+di)}=\overline{(a+c)+(b+d)i}=(a+c)-(b+d)i=a-bi+c-di=\overline{z}+\overline{w}
zw=(a+bi)(c+di)=(acbd)+(ad+bc)i=(acbd)(ad+bc)i=zw\overline{zw}=\overline{(a+bi)(c+di)}=\overline{(ac-bd)+(ad+bc)i}=(ac-bd)-(ad+bc)i=\overline{z}\cdot\overline{w}

Absolute Value

a+bi=a2+b2|a+bi|=\sqrt{a^2+b^2}
Note this is a real number.
Also, z=zz|z|=\sqrt{z\overline{z}} since
zz=(a+bi)(abi)=a2b2(1)=a2+b2z\overline{z}=(a+bi)(a-bi)=a^2-b^2(-1)=a^2+b^2
and zw=zw|zw|=|z||w| since
zw=(acbd)+(ad+bc)i=(acbd)2+(ad+bc)2=a2c2+b2d22abcd+a2d2+b2c2+2abcd=(a2+b2)(c2+d2)=a2+b2c2+d2=zw|zw|=|(ac-bd)+(ad+bc)i|=\sqrt{(ac-bd)^2+(ad+bc)^2}\\=\sqrt{a^2c^2+b^2d^2-2abcd+a^2d^2+b^2c^2+2abcd}\\=\sqrt{(a^2+b^2)(c^2+d^2)}=\sqrt{a^2+b^2}\cdot\sqrt{c^2+d^2}=|z||w|

Division by a nonzero real number

a+bic=ac+bci\frac{a+bi}{c}=\frac{a}{c}+\frac{b}{c}i

Division by a nonzero complex number

zw=zwww=zww2\frac{z}{w}=\frac{z\overline{w}}{w\overline{w}}=\frac{z\overline{w}}{|w|^2}
Note that w2|w|^2 is a real number

Real and Imaginary Part

R(a+bi)=a\mathscr{R}(a+bi)=a
I(a+bi)=b\mathscr{I}(a+bi)=b

Polar Coordinates for Complex Numbers

Any complex number zz also has polar coordinates
z=z(cosθ+isinθ)z=|z|(\cos\theta+i\sin\theta)
where θ\theta is the argument of zz, denoted θ=arg(z)\theta=\arg{(z)}.
Note arg(z)=arg(z)\arg{(\overline{z})}=-\arg{(z)}

When you multiply, complex numbers, you multiply the absolute values and add the arguments.
zw=zw  arg(zw)=arg(z)+arg(w)|zw|=|z||w|\space\space\arg{(zw)}=\arg{(z)}+\arg{(w)}


Fundamental Theorem of Algebra

Fundamental Theorem of Algebra: Every degree nn polynomial has exactly nn complex roots, counting multiplicity.
In other words, for any degree nn polynomial f(x)=xn+an1xn1++a1x+a0f(x)=x^n+a_{n_1}x^{n-1}+\cdots+a_1x+a_0, there exists (not necessarily distinct) λ1,.,,,λn\lambda_1,.,,,\lambda_n such that f(x)=(xλ1)(xλ2)(xλn)f(x)=(x-\lambda_1)(x-\lambda_2)\cdots(x-\lambda_n)

If f(x)f(x) has real coefficients an λ\lambda is a root, then λ\overline{\lambda} is also a root since if f(λ)=0f(\lambda)=0,
0=f(λ)=λn+an1λn1++a1λ+a0=λn+an1λn1++a1λ+a0=f(λ)0=\overline{f(\lambda)}=\overline{\lambda^n+a_{n-1}\lambda^{n-1}+\cdots+a_1\lambda+a_0}=\overline{\lambda}^n+a_{n-1}\overline{\lambda}^{n-1}+\cdots+a_1\overline{\lambda}+a_0=f(\overline{\lambda})
So for polynomials with real roots, solutions come in conjugate pairs.


Complex Vector Spaces

We define a complex vector space in the same way we defined vector spaces for R\mathbb{R} with the same operations, including vector addition, scalar multiplication, matrix operations, etc.

Like Rn\mathbb{R}^n, we denote Cn\mathbb{C}^n the set of ordered nn-tuples of complex numbers
Cn={(z1,...,zn)  z1,...,znC}\mathbb{C}^n=\{(z_1,...,z_n)\space|\space z_1,...,z_n\in\mathbb{C}\}
They can also be written as a column vector of nn complex entries.
Cn={(z1zn)  z1,...,znC}C^n=\{\begin{pmatrix}z_1\\\vdots\\z_n\end{pmatrix}\space|\space z_1,...,z_n\in\mathbb{C}\}
Note that since RC\mathbb{R}\subset\mathbb{C}, RnCn\mathbb{R}^n\subset\mathbb{C}^n

If v=(z1zn)C\vec{v}=\begin{pmatrix}z_1\\\vdots\\z_n\end{pmatrix}\in\mathbb{C}, we can write
z1=a1+ibi,...,zn=an+ibn with a1,...,an,b1,...,bnRz_1=a_1+ib_i,..., z_n=a_n+ib_n\text{ with } a_1,...,a_n,b_1,...,b_n\in\mathbb{R}
Thus,
v=(z1zn)=(a1an)+i(b1bn), with (a1an),(b1bn)Rn\vec{v}=\begin{pmatrix}z_1\\\vdots\\z_n\end{pmatrix}=\begin{pmatrix}a_1\\\vdots\\a_n\end{pmatrix}+i\begin{pmatrix}b_1\\\vdots\\b_n\end{pmatrix},\text{ with }\begin{pmatrix}a_1\\\vdots\\a_n\end{pmatrix},\begin{pmatrix}b_1\\\vdots\\b_n\end{pmatrix}\in\mathbb{R}^n

So, every vector vCn\vec{v}\in\mathbb{C}^n can be uniquely written as a linear combination v=a+ib\vec{v}=\vec{a}+i\vec{b} with a,bRn\vec{a},\vec{b}\in\mathbb{R}^n

Proof

We have shown we can write it, so it remains to show it is unique.
Recall that in v\vec{v}, each zk=ak+ibkz_k=a_k+ib_k for k{1,...,n}k\in\{1,...,n\}, where ak,bkRa_k,b_k\in\mathbb{R} are the kk-th elements of a\vec{a} and b\vec{b} respectively. Therefore, we must have R(zk)=ak\mathscr{R}(z_k)=a_k and I(zk)=bk\mathscr{I}(z_k)=b_k, which is a well-defined function, making a\vec{a} and b\vec{b} unique.

From that, we define R(v)=a\mathscr{R}(\vec{v})=\vec{a} and I(v)=b\mathscr{I}(\vec{v})=\vec{b}, so that v=R(v)+iI(v)\vec{v}=\mathscr{R}(\vec{v})+i\mathscr{I}(\vec{v})

Some Facts

R(0)=I(0)=0R(v+w)=R(v)+R(w),I(v+w)=I(v)+I(w)R(rv)=rR(v),I(rv)=rI(v),for all rRR(iv)=I(v),I(iv)=R(v)\mathscr{R}(\vec{0})=\mathscr{I}(\vec{0})=\vec{0}\\ \begin{array}{cc}\mathscr{R}(\vec{v}+\vec{w})=\mathscr{R}(\vec{v})+\mathscr{R}(\vec{w}),&\mathscr{I}(\vec{v}+\vec{w})=\mathscr{I}(\vec{v})+\mathscr{I}(\vec{w})\end{array}\\ \begin{array}{cc}\mathscr{R}(r\vec{v})=r\mathscr{R}(\vec{v}),&\mathscr{I}(r\vec{v})=r\mathscr{I}(\vec{v}),&\text{for all }r\in\mathbb{R}\end{array}\\ \begin{array}{cc}\mathscr{R}(i\vec{v})=-\mathscr{I}(\vec{v}),&\mathscr{I}(i\vec{v})=\mathscr{R}(\vec{v})\end{array}

The fact that v=R(v)+iI(v)\vec{v}=\mathscr{R}(\vec{v})+i\mathscr{I}(\vec{v}) and R(v),I(v)Rn\mathscr{R}(\vec{v}),\mathscr{I}(\vec{v})\in\mathbb{R}^n implies Rn\mathbb{R}^n spans Cn\mathbb{C}^n over the scalars C\mathbb{C}. So, if a set SRnS\subseteq\mathbb{R}^n spans Rn\mathbb{R}^n over real scalars, then it also spans Cn\mathbb{C}^n over complex scalars.

If a1,...,akR\vec{a}_1,...,\vec{a}_k\in\mathbb{R} is a linearly independent subset of the real vector space Rn\mathbb{R}^n, then a1,...,ak\vec{a}_1,...,\vec{a}_k is a linearly independent subset of the complex vector space Cn\mathbb{C}^n.

Proof

Suppose z1a1++zkak=0z_1\vec{a}_1+\cdots+z_k\vec{a}_k=\vec{0} with z1,...,zkCz_1,...,z_k\in\mathbb{C}. Then using zi=R(zi)+iI(zi)z_i=\mathscr{R}(z_i)+i\mathscr{I}(z_i) for i{1,...,k}i\in\{1,...,k\}, we have
[R(z1)a1++R(zk)ak]+i[I(z1)a1++I(zk)ak]=0[\mathscr{R}(z_1)\vec{a}_1+\cdots+\mathscr{R}(z_k)\vec{a}_k]+i[\mathscr{I}(z_1)\vec{a}_1+\cdots+\mathscr{I}(z_k)\vec{a}_k]=\vec{0}
Since both R(z1)a1++R(zk)ak\mathscr{R}(z_1)\vec{a}_1+\cdots+\mathscr{R}(z_k)\vec{a}_k and I(z1)a1++I(zk)ak\mathscr{I}(z_1)\vec{a}_1+\cdots+\mathscr{I}(z_k)\vec{a}_k are in Rn\mathbb{R}^n, we must have
R(z1)a1++R(zk)ak=R(z1a1++zkak)=R(0)=0\mathscr{R}(z_1)\vec{a}_1+\cdots+\mathscr{R}(z_k)\vec{a}_k=\mathscr{R}(z_1\vec{a}_1+\cdots+z_k\vec{a}_k)=\mathscr{R}(0)=\vec{0}
I(z1)a1++I(zk)ak=I(z1a1++zkak)=I(0)=0\mathscr{I}(z_1)\vec{a}_1+\cdots+\mathscr{I}(z_k)\vec{a}_k=\mathscr{I}(z_1\vec{a}_1+\cdots+z_k\vec{a}_k)=\mathscr{I}(\vec{0})=\vec{0}
Since a1,...,aka_1,...,a_k is linearly independent and R(z1),...,R(zk),I(z1),...,I(zk)R\mathscr{R}(z_1),...,\mathscr{R}(z_k),\mathscr{I}(z_1),...,\mathscr{I}(z_k)\in\mathbb{R}, we must have R(z1)==R(zk)=I(z1)==I(zk)=0\mathscr{R}(z_1)=\cdots=\mathscr{R}(z_k)=\mathscr{I}(z_1)=\cdots=\mathscr{I}(z_k)=0

This implies any basis B=b1,...,bnRnB=\langle\vec{b}_1,...,\vec{b}_n\rangle\subset\mathbb{R}^n is also a basis of Cn\mathbb{C}^n. In particular, the standard basis En\mathcal{E}_n of Rn\mathbb{R}^n is also the standard basis of Cn\mathbb{C}^n

Complex Linear Maps

If t:RnRmt:\mathbb{R}^n\to\mathbb{R}^m is a linear map, then we can define a map tc:CnCmt^c:\mathbb{C}^n\to\mathbb{C}^m by
tc(v)=t(Rv)+it(Iv)t^c(\vec{v})=t(\mathscr{R}\vec{v})+it(\mathscr{I}\vec{v})
In particular, tc(v)=t(v)t^c(\vec{v})=t(\vec{v}) for vRn\vec{v}\in\mathbb{R}^n.
This map tct^c is linear, and has the same matrix representation in the complex standard bases as the matrix representation of tt in the real standard bases.
The map tct^c is called the complexification of tt or tt complexified
Proof is relatively simple: prove linearity, prove the matrices are the same.

So, all the results in real vector spaces carry over to complex vector spaces.


Similarity

Recall two matrices HH and H^\hat{H} are matrix equivalent if there are non singular matrices PP and QQ such that H^=PHQ\hat{H}=PHQ (e.g. HH and H^\hat{H} represent the same map in different bases)
We now consider the special case of transformations, where the codomain equals the domain, and add the requirement that the basis is also the same.
i.e. representations with respect to B,BB,B and D,DD,D

The matrices TT and T^\hat{T} are similar if there is a nonsingular PP such that T^=PTP1\hat{T}=PTP^{-1}

Note the zero matrix ZZ and the identity matrix II is similar to only itself since
PZP1=PZ=ZPIP1=PP1=IPZP^{-1}=PZ=Z\\ PIP^{-1}=PP^{-1}=I

Similarity is an equivalence relation, since it is a specific case of matrix equivalence. However, the converse is not true.